Installation & Quick Start
This guide will walk you through installing Cosdata and running your first test to verify everything is working correctly.
Installation Options
1. Quick Install (Linux)
For a simple one-step installation on Linux, run:
curl -sL https://cosdata.io/install.sh | bash
This script will handle all dependencies and set up Cosdata automatically.
2. Docker Install (Mac & Windows)
For Mac & Windows users, we recommend using our Docker-based installation:
- Ensure Docker is installed and running
- Pull the latest image from Docker Hub:
docker pull cosdatateam/cosdata:latest
- Run the container:
docker run -it \ --name cosdata-server \ -p 8443:8443 \ -p 50051:50051 \ cosdatateam/cosdata:latest
The server will be available at http://localhost:8443
.
3. Build from Source (Development)
Prerequisites
Before building from source, ensure you have:
- Git
- Rust (version 1.81.0 or higher)
- Cargo (Rust’s package manager)
- C++ compiler (GCC 4.8+ or Clang 3.4+)
- Python 3.8+ (for running test scripts)
Build Steps
# Clone the repositorygit clone https://github.com/cosdata/cosdata.gitcd cosdata
# Build the projectcargo build --release
# Run Cosdata./target/release/cosdata --admin-key your_admin_key
You should see output similar to:
[2025-02-21T02:30:29Z INFO cosdata::web_server] starting HTTP server at http://127.0.0.1:8443[2025-02-21T02:30:29Z INFO actix_server::builder] starting 20 workers[2025-02-21T02:30:29Z INFO actix_server::server] Actix runtime found; starting in Actix runtime[2025-02-21T02:30:29Z INFO actix_server::server] starting service: "actix-web-service-127.0.0.1:8443", workers: 20, listening on: 127.0.0.1:8443[2025-02-21T02:30:29Z INFO cosdata::grpc::server] gRPC server listening on [::1]:50051
Configuration Options
Cosdata can be configured using command-line arguments or a configuration file:
Command-line Arguments
cosdata --admin-key <your-admin-key> --port 8443 --data-dir /path/to/data
Configuration File
Create a config.toml
file:
admin_key = "your-admin-key"port = 8443data_dir = "/path/to/data"log_level = "info"
Then run Cosdata with:
cosdata --config config.toml
Quick Start: Testing Your Installation
Now that Cosdata is running, let’s verify the installation by running a simple test script.
Setting Up the Test Environment
-
Install Python Dependencies
Terminal window # Navigate to the test directorycd tests# Install dependencies using uv (or pip)uv sync -
Run the Basic Test Script
The
test.py
script performs the following:- Creates a test collection and a Dense HNSW Index
- Submits batches of random vectors in a transaction
- Uses about 10% of the vectors as query vectors by adding small perturbations
- Issues queries to the server and performs a brute force search locally
- Compares the results
Terminal window uv run test.pyIf successful, you should see output confirming that the test passed, with metrics on query performance.
Testing with Real-World Datasets
For a more comprehensive test with real-world data:
uv run test-dataset.py
This script loads sample datasets and performs similarity searches to demonstrate Cosdata’s capabilities in a realistic scenario.
Creating Your First Collection
Let’s create a simple collection and add some vectors using the Python SDK:
from cosdata import CosdataClient
# Connect to the Cosdata serverclient = CosdataClient( host="localhost", port=8443, admin_key="your-admin-key")
# Create a collection for document embeddingscollection = client.create_collection( name="documents", description="Collection for document embeddings", dense_vector={ "enabled": True, "auto_create_index": True, "dimension": 768 })
# Add some vectorsclient.insert_vector( collection_name="documents", vector_id="doc1", vector=[0.1, 0.2, 0.3, ...], # 768-dimensional vector metadata={ "title": "Introduction to Vector Databases", "category": "technology" })
# Search for similar vectorsresults = client.search( collection_name="documents", query_vector=[0.1, 0.2, 0.3, ...], limit=5, include_metadata=True)
# Print resultsfor result in results: print(f"Document: {result['id']}") print(f"Similarity: {result['similarity']}") print(f"Metadata: {result['metadata']}")
Verifying Your Installation
To verify that Cosdata is running correctly, you can use the health check endpoint:
curl http://localhost:8443/health
If everything is working, you should receive a 200 OK
response.
Next Steps
Now that you have Cosdata up and running, you can:
- Explore the API Reference to learn how to interact with Cosdata
- Learn about Search Relevance features
- Discover how to optimize Performance
- Try out the Cos Graph Query Language for complex queries
- Use the Python SDK to build applications with Cosdata
- Contribute to the project on GitHub
- Join our Discord community to connect with other Cosdata users