Skip to content

Python SDK

Cosdata Python SDK

A Python SDK for interacting with the Cosdata Vector Database.

Installation

You can install the Cosdata Python SDK from PyPI:

Terminal window
pip install cosdata-client

Basic Usage

Connecting to Cosdata

First, import the Cosdata client and establish a connection:

from cosdata.client import Client
# Initialize the client with your server details
client = Client(
host="http://127.0.0.1:8443", # Default host
username="admin", # Default username
password="admin", # Default password
verify=False # SSL verification
)

Creating a Collection

Create a new vector collection:

# Create a collection for storing 768-dimensional vectors
collection = client.create_collection(
name="my_collection",
dimension=768, # Vector dimension
description="My vector collection"
)

Creating an Index

Create an index for efficient vector search:

# Create an index with custom parameters
index = collection.create_index(
distance_metric="cosine", # Default: cosine
num_layers=10, # Default: 10
max_cache_size=1000, # Default: 1000
ef_construction=128, # Default: 128
ef_search=64, # Default: 64
neighbors_count=32, # Default: 32
level_0_neighbors_count=64 # Default: 64
)

Adding Vectors

Add vectors to your collection using transactions:

# Generate some example vectors
import numpy as np
def generate_random_vector(id: int, dimension: int) -> dict:
values = np.random.uniform(-1, 1, dimension).tolist()
return {
"id": id,
"values": values,
"metadata": { # Optional metadata
"created_at": "2024-03-20",
"category": "example"
}
}
# Generate and insert vectors
vectors = [generate_random_vector(i, 768) for i in range(100)]
# Add vectors using a transaction
with index.transaction() as txn:
txn.upsert(vectors)

Searching Vectors

Perform similarity search:

# Search for similar vectors
results = index.query(
vector=vectors[0]["values"], # Use first vector as query
nn_count=5 # Number of nearest neighbors
)
# Fetch a specific vector
vector = index.fetch_vector(vector_id="1")

Managing Collections

List and get information about collections:

# Get collection information
collection_info = collection.get_info()
print(f"Collection info: {collection_info}")
# List all collections
print("Available collections:")
for coll in client.collections():
print(f" - {coll.name} (dimension: {coll.dimension})")

API Reference

Client

The main client for interacting with the Vector Database API.

client = Client(
host="http://127.0.0.1:8443", # Optional
username="admin", # Optional
password="admin", # Optional
verify=False # Optional
)

Methods:

  • create_collection(name: str, dimension: int = 1024, description: Optional[str] = None) -> Collection
  • get_collection(collection_name: str) -> Collection
  • list_collections() -> requests.Response
  • collections() -> Iterator[Collection]

Collection

Represents a collection in the vector database.

collection = client.get_collection("my_collection")

Methods:

  • create_index(distance_metric: str = "cosine", ...) -> Index
  • index(distance_metric: str = "cosine") -> Index
  • get_info() -> Dict[str, Any]

Index

Manages indexes and vector operations.

index = collection.create_index()

Methods:

  • create_transaction() -> Transaction
  • transaction() -> Iterator[Transaction] (context manager)
  • query(vector: List[float], nn_count: int = 5) -> Dict[str, Any]
  • fetch_vector(vector_id: Union[str, int]) -> Dict[str, Any]

Transaction

Manages batch operations on vectors.

# Using context manager (recommended)
with index.transaction() as txn:
txn.upsert(vectors)
# Manual transaction management
txn = index.create_transaction()
txn.upsert(vectors)
txn.commit() # or txn.abort()

Methods:

  • upsert(vectors: List[Dict[str, Any]]) -> Self
  • commit() -> Optional[Dict[str, Any]]
  • abort() -> Optional[Dict[str, Any]]

Best Practices

  1. Connection Management

    • Reuse the client instance across your application
    • The client automatically handles authentication and token management
  2. Vector Operations

    • Use transactions for batch operations
    • The context manager (with statement) automatically handles commit/abort
    • Maximum batch size is 200 vectors per transaction
  3. Error Handling

    • All operations raise exceptions on failure
    • Use try/except blocks for error handling
    • Transactions automatically abort on exceptions when using the context manager
  4. Performance

    • Adjust index parameters based on your use case
    • Use appropriate vector dimensions
    • Consider batch sizes for large operations

License

This project is licensed under the MIT License - see the LICENSE file for details.