Python SDK
Cosdata Python SDK
A Python SDK for interacting with the Cosdata Vector Database.
Installation
You can install the Cosdata Python SDK from PyPI:
pip install cosdata-client
Basic Usage
Connecting to Cosdata
First, import the Cosdata client and establish a connection:
from cosdata.client import Client
# Initialize the client with your server detailsclient = Client( host="http://127.0.0.1:8443", # Default host username="admin", # Default username password="admin", # Default password verify=False # SSL verification)
Creating a Collection
Create a new vector collection:
# Create a collection for storing 768-dimensional vectorscollection = client.create_collection( name="my_collection", dimension=768, # Vector dimension description="My vector collection")
Creating an Index
Create an index for efficient vector search:
# Create an index with custom parametersindex = collection.create_index( distance_metric="cosine", # Default: cosine num_layers=10, # Default: 10 max_cache_size=1000, # Default: 1000 ef_construction=128, # Default: 128 ef_search=64, # Default: 64 neighbors_count=32, # Default: 32 level_0_neighbors_count=64 # Default: 64)
Adding Vectors
Add vectors to your collection using transactions:
# Generate some example vectorsimport numpy as np
def generate_random_vector(id: int, dimension: int) -> dict: values = np.random.uniform(-1, 1, dimension).tolist() return { "id": id, "values": values, "metadata": { # Optional metadata "created_at": "2024-03-20", "category": "example" } }
# Generate and insert vectorsvectors = [generate_random_vector(i, 768) for i in range(100)]
# Add vectors using a transactionwith index.transaction() as txn: txn.upsert(vectors)
Searching Vectors
Perform similarity search:
# Search for similar vectorsresults = index.query( vector=vectors[0]["values"], # Use first vector as query nn_count=5 # Number of nearest neighbors)
# Fetch a specific vectorvector = index.fetch_vector(vector_id="1")
Managing Collections
List and get information about collections:
# Get collection informationcollection_info = collection.get_info()print(f"Collection info: {collection_info}")
# List all collectionsprint("Available collections:")for coll in client.collections(): print(f" - {coll.name} (dimension: {coll.dimension})")
API Reference
Client
The main client for interacting with the Vector Database API.
client = Client( host="http://127.0.0.1:8443", # Optional username="admin", # Optional password="admin", # Optional verify=False # Optional)
Methods:
create_collection(name: str, dimension: int = 1024, description: Optional[str] = None) -> Collection
get_collection(collection_name: str) -> Collection
list_collections() -> requests.Response
collections() -> Iterator[Collection]
Collection
Represents a collection in the vector database.
collection = client.get_collection("my_collection")
Methods:
create_index(distance_metric: str = "cosine", ...) -> Index
index(distance_metric: str = "cosine") -> Index
get_info() -> Dict[str, Any]
Index
Manages indexes and vector operations.
index = collection.create_index()
Methods:
create_transaction() -> Transaction
transaction() -> Iterator[Transaction]
(context manager)query(vector: List[float], nn_count: int = 5) -> Dict[str, Any]
fetch_vector(vector_id: Union[str, int]) -> Dict[str, Any]
Transaction
Manages batch operations on vectors.
# Using context manager (recommended)with index.transaction() as txn: txn.upsert(vectors)
# Manual transaction managementtxn = index.create_transaction()txn.upsert(vectors)txn.commit() # or txn.abort()
Methods:
upsert(vectors: List[Dict[str, Any]]) -> Self
commit() -> Optional[Dict[str, Any]]
abort() -> Optional[Dict[str, Any]]
Best Practices
-
Connection Management
- Reuse the client instance across your application
- The client automatically handles authentication and token management
-
Vector Operations
- Use transactions for batch operations
- The context manager (
with
statement) automatically handles commit/abort - Maximum batch size is 200 vectors per transaction
-
Error Handling
- All operations raise exceptions on failure
- Use try/except blocks for error handling
- Transactions automatically abort on exceptions when using the context manager
-
Performance
- Adjust index parameters based on your use case
- Use appropriate vector dimensions
- Consider batch sizes for large operations
License
This project is licensed under the MIT License - see the LICENSE file for details.