Skip to content

Node.js SDK

The Cosdata Node.js SDK provides a convenient way to interact with the Cosdata vector database from Node.js applications. This guide will help you get started with the SDK and show you how to perform common operations.

Installation

You can install the Cosdata Node.js SDK using npm:

Terminal window
npm install cosdata-sdk

Basic Usage

Connecting to Cosdata

First, import the Cosdata client and establish a connection:

import { Client } from 'cosdata-sdk';
// Initialize the client with your server details
const client = new Client({
host: 'http://localhost:8443',
username: 'admin',
password: 'admin',
verifySSL: false
});

Creating a Collection

Create a new vector collection:

// Create a collection for storing 768-dimensional vectors
const collection = await client.createCollection({
name: 'my_embeddings',
dimension: 768,
description: 'Collection for storing document embeddings'
});

Adding Vectors

Add vectors to your collection using transactions:

// Get the collection and create an index
const collection = await client.getCollection('my_embeddings');
const index = await collection.createIndex();
// Using automatic transaction management (recommended)
await index.transaction(async (txn) => {
// Single vector insertion
await txn.upsert([{
id: 'doc1',
values: [0.1, 0.2, 0.3, ...], // 768-dimensional vector
title: 'Sample Document',
category: 'documentation',
tags: ['example', 'getting-started']
}]);
// Batch insertion
const vectors = [
{
id: 'doc2',
values: [0.2, 0.3, 0.4, ...],
title: 'Another Document'
},
{
id: 'doc3',
values: [0.3, 0.4, 0.5, ...],
title: 'Third Document'
}
];
await txn.upsert(vectors);
});
// Using manual transaction management
const txn = index.createTransaction();
try {
await txn.upsert([{
id: 'doc4',
values: [0.4, 0.5, 0.6, ...],
title: 'Fourth Document'
}]);
await txn.commit();
} catch (error) {
await txn.abort();
throw error;
}

Searching Vectors

Perform similarity search:

// Get the collection and create an index
const collection = await client.getCollection('my_embeddings');
const index = await collection.createIndex();
// Search for similar vectors
const results = await index.query({
vector: [0.1, 0.2, 0.3, ...],
nnCount: 5
});
// Process search results
for (const result of results) {
console.log(`Vector ID: ${result.id}`);
console.log(`Similarity: ${result.similarity}`);
console.log(`Metadata: ${JSON.stringify(result.metadata)}`);
}
// Fetch a specific vector
const vector = await index.fetchVector('doc1');
console.log('Fetched vector:', vector);

Creating and Managing Indexes

Create and manage search indexes:

// Get the collection
const collection = await client.getCollection('my_embeddings');
// Create an HNSW index with custom parameters
const index = await collection.createIndex({
distanceMetric: 'cosine',
numLayers: 7,
maxCacheSize: 1000,
efConstruction: 512,
efSearch: 256,
neighborsCount: 32,
level0NeighborsCount: 64
});
// Get collection information including indexes
const collectionInfo = await collection.getInfo();
console.log('Collection info:', collectionInfo);

Advanced Usage

Batch Operations

Perform batch operations for better performance:

// Get the collection and create an index
const collection = await client.getCollection('my_embeddings');
const index = await collection.createIndex();
// Generate example vectors
const vectors = [];
for (let i = 0; i < 1000; i++) {
// Create a random 768-dimensional vector
const values = Array.from({ length: 768 }, () => Math.random());
vectors.push({
id: `batch_doc_${i}`,
values,
metadata: {
batch_id: Math.floor(i / 100),
timestamp: new Date().toISOString()
}
});
}
// Insert vectors in batches using transactions
const batchSize = 200; // Maximum batch size
for (let i = 0; i < vectors.length; i += batchSize) {
const batch = vectors.slice(i, i + batchSize);
await index.transaction(async (txn) => {
await txn.upsert(batch);
console.log(`Inserted batch ${Math.floor(i/batchSize) + 1}/${Math.ceil(vectors.length/batchSize)}`);
});
}

Error Handling

Implement proper error handling in your applications:

try {
// Perform Cosdata operations
const collection = await client.getCollection('non_existent_collection');
} catch (error) {
if (error.message.includes('Failed to get collection')) {
console.error('Collection not found:', error);
} else if (error.message.includes('Authentication failed')) {
console.error('Authentication error:', error);
} else if (error.message.includes('Connection error')) {
console.error('Connection error:', error);
} else if (error.message.includes('Transaction error')) {
console.error('Transaction error:', error);
} else {
console.error('Unexpected error:', error);
}
}

Best Practices

Connection Management

  • Reuse client instances when possible
  • Implement connection pooling for high-throughput applications
  • Handle connection errors with appropriate retry logic

Vector Operations

  • Normalize vectors before insertion
  • Use batch operations for better performance
  • Keep vector dimensions consistent

Transaction Management

  • Use the index.transaction() method for automatic commit/abort handling
  • Keep transactions short-lived
  • Implement proper error handling and retry logic

Performance Optimization

  • Use appropriate batch sizes (200 vectors per batch)
  • Create indexes for frequently searched collections
  • Monitor and optimize query performance

API Reference

Client

  • new Client(options): Create a new client instance
    • options.host: Server host URL (default: ‘http://127.0.0.1:8443’)
    • options.username: Username for authentication (default: ‘admin’)
    • options.password: Password for authentication (default: ‘admin’)
    • options.verifySSL: Whether to verify SSL certificates (default: false)
  • client.createCollection(options): Create a new collection
    • options.name: Name of the collection
    • options.dimension: Vector dimension (default: 1024)
    • options.description: Optional collection description
  • client.getCollection(name): Get an existing collection
  • client.collection(name): Alias for getCollection
  • client.listCollections(): List all collections
  • client.collections(): Get all collections as Collection objects

Collection

  • collection.createIndex(options): Create a new index
    • options.distanceMetric: Type of distance metric (default: ‘cosine’)
    • options.numLayers: Number of layers in HNSW graph (default: 7)
    • options.maxCacheSize: Maximum cache size (default: 1000)
    • options.efConstruction: ef parameter for construction (default: 512)
    • options.efSearch: ef parameter for search (default: 256)
    • options.neighborsCount: Number of neighbors (default: 32)
    • options.level0NeighborsCount: Level 0 neighbors count (default: 64)
  • collection.index(distanceMetric): Get or create an index
  • collection.getInfo(): Get collection information

Index

  • index.createTransaction(): Create a new transaction
  • index.transaction(callback): Execute operations in a transaction
  • index.query(options): Search for similar vectors
    • options.vector: Query vector
    • options.nnCount: Number of nearest neighbors (default: 5)
  • index.fetchVector(id): Fetch a specific vector by ID

Transaction

  • transaction.upsert(vectors): Insert or update vectors
  • transaction.commit(): Commit the transaction
  • transaction.abort(): Abort the transaction

Reference

For more detailed information, refer to: